Chemical and Cytotoxic Constituents from the Stem of Machilus zuihoensis

by Ming-Jen Cheng^a), Bolleddula Jayaprakasam^a), Tsutomu Ishikawa^b), Hiroko Seki^c), Ian-Lih Tsai^a), Jeh-Jeng Wang^d), and Ih-Sheng Chen^{*a})

^a) Graduate Institute of Pharmaceutical Sciences, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan, R.O.C.

^b) Faculty of Pharmaceutical Sciences, Chiba University, 1–33 Yayoi, Inage, Chiba 263-8522, Japan ^c) Analytical Center, Chiba University, 1–33 Yaoyi, Inage, Chiba 263-8522, Japan

^d) School of Chemistry, Kaohsiung Medical University, Kaohsiung, Taiwan, R.O.C.

Five new compounds, including a novel lactone, machilactone (=rel-(2R,3aR,6E,6aS)-2-heptadecyl-3amethyl-6-octadecylidene-6,6a-dihydrofuro[2,3-d][1,3]dioxol-5(3aH)-one; **1**), a new sesquiterpene, 3,4-dihydroxy- β -bisabolol (=rel-(1R,2S,4R)-1-[(1R)-1,5-dimethylhex-4-enyl]-1-methylcyclohexane-1,2,4-triol; **2**), a new secobutyrolactone, methyl (2E)-2-(1-hydroxy-2-oxopropyl)eicos-2-enoate (**3**), two new butyrolactones, machicolide A (**4**) and machicolide B (**5**) (=3E,4R,5R)- and (3Z,4R,5R)-4,5-dihydro-4-hydroxy-5-methoxy-5methyl-3-octadecylidenefuran-2(3H)-one, resp.) as a mixture, together with known caryophyllene oxide (=4,12,12-trimethyl-9-methylene-5-oxatricyclo[8.2.0.0^{4,6}]dodecane), hexacosane, tetracosanoic acid, isomahubanolide-23 (=(3E,4R)-4,5-dihydro-4-hydroxy-5-methylidene-3-octadecylidenefuran-2(3H)-one), and β -bisabolol (=(1S)-1-[(1S)-1,5-dimethylhex-4-enyl]-4-methylcyclohex-3-en-1-ol) were isolated from the stem wood of *Machilus zuihoensis*. The structures of these compounds were established by spectroscopic studies. The eicos-2-enoate (**3**) and β -bisabolol exhibited marginal cytotoxicity against NUGC and HONE-1 cancer cell lines *in vitro*.

Introduction. – Recently, studies on Lauraceous plants of chemical interest have gradually brought cytotoxic constituents into focus [1-7]. *Machilus zuihoensis* HAYATA (Lauraceae), an endemic species in Taiwan, is an evergreen medium-sized tree found widely throughout the island from the lowlands up to 1500 m [8]. Its bark is an incense material for joss sticks. Earlier investigations have established the presence of the two alkaloids: (-)-L-N-norarmepavine and (\pm) -N-norarmepavine in the stem [9], and of four neolignans in the bark of this plant [10]. Of this plant, only the stem wood showed significant cytotoxicity on high-throughput screening against NUGC-3 and HONE-1 cancer cell lines *in vitro*. Examination of the hexane-soluble part of the stem wood led to the isolation of five new compounds: machilactone (1), 3,4-dihydroxy- β -bisabolol (2), methyl (2*E*)-2-(1-hydroxy-2-oxopropyl)eicos-2-enoate (3), and the mixture of machicolide A (4) and machicolide B (5). We now report the isolation and characterization of 1–5 by spectral analyses and the cytotoxicity of the isolates.

Results and Discussion. The optically active machilactone (1), obtained as colorless needles, was analyzed for $C_{41}H_{76}O_4$ from its FAB-HR-MS (633.5803 ($[M + H]^+$)). The UV spectrum (243 nm) and IR data (1763 and 1677 cm⁻¹) indicated the presence of an α -alkylidene-substituted γ -lactone skeleton and the ¹H- and ¹³C-NMR spectra suggested the presence of a γ -butyrolactone moiety [4] connected to another aliphatic chain by an acetal linkage.

The ¹H-NMR signals of **1** at δ 7.09 and 2.40 were assignable to CH=C(6) and $CH_2CH=C(6)$ based on HMQC and ¹H,¹H-COSY experiments. Comparison with available butyrolactones of this kind and a significant fragment at m/z 393 in the FAB-MS suggested the presence of an octadecylidene side chain at C(6). The geometry of the alkylidene moiety was determined to be (*E*) based on the chemical shifts of CH=C(6) (δ 7.09) and $CH_2CH=C(6)$ (δ 2.40) [4]. This was also confirmed by the NOE difference spectrum, which showed the correlation $H-C(6a)/CH_2CH=C(6)$. The ¹H-NMR signal at δ 5.01 was assigned to H-C(2) as this proton correlated with the dioxygenated aliphatic C(2) signal at δ 103.9 in the HMQC and with the neighboring CH-C(2) (δ 1.68) in the COSY plot. From the ¹H,¹H-COSY experiment and the molecular formula of **1**, the length of the saturated aliphatic side-chain portion connected to the exocyclic C=C bond was deduced to be C₁₇. A Me group at δ 1.71 was placed at C(3a), as these protons showed ²J correlation with C(3a) (δ 109.8) and ³J butyrolactone moiety by a O-C-O linkage was confirmed by the ¹³C-NMR signals of two aliphatic dioxygenated C-atoms at δ 103.9 (C(2)), 109.8 (C(3a)) and the correlation observed between H-C(6a) (δ 4.89) and C(2) in the HMBC plot.

According to HMQC, COSY, NOE, and HMBC data, the structure of **1** was elucidated as 2-heptadecyl-3a-methyl-6-octadecylidene-6,6a-dihydrofuro[2,3-*d*][1,3]di-oxol-5-(3a*H*)-one was attributed to **1**, with the relative *cis* configuration of H-C(6a)/Me-C(3a) and $H-C(6a)/CH_2-C(2)$ and (6*E*)-configuration.

Compound **2**, obtained as colorless needles, has the molecular formula $C_{15}H_{28}O_3$, as determined by FAB-HR-MS. According to the IR, ¹H-NMR, ¹³C-NMR, DEPT, COSY, NOE, HMQC, and HMBC studies, the structure of **2** was elucidated as 3,4-dihydroxy- β -bisabolol, *i.e.* as *rel-*(1*R*,2*S*-4*R*)-1-[(1*R*)-1,5-dimethylhex-4-enyl]-1-methylcyclohexane-1,2,4-triol.

A strong IR absorption band at 3322 cm⁻¹ indicated the presence of OH groups in 2. The ¹³C-NMR and DEPT experiments showed the 15 C resonances for 4 Me, 5 CH₂, 3 CH, and 3 quarternary C-atoms, suggesting that 2 could be a sesquiterpene of the α - or β -bisabolene type. The presence of a Me at δ 0.93 (J=6.6, Me – C(1')) supported that **2** was of the latter type. A close comparison of ¹³C-NMR data with β -bisabolol [11], also isolated in this study (see below), the missing signal for the C=C bond, and the presence of further two oxygenated C-atoms at δ 71.7 and 74.9 suggested that **2** could be 3,4-dihydroxy- β -bisabolol. The ¹H-NMR showed signals for two Me groups at δ 1.60 and 1.68, assigned to Me – C(6') and Me – C(5'), respectively, as they showed the correlation with each other as well as ${}^{2}J$ correlation with C(5') and ${}^{3}J$ correlation with C(4') in its HMBC plot. The third Me group at δ 0.93 (d, J = 6.6) was attributed to Me – C(1'), and the remaining Me signal at δ 1.33 to Me-C(1) based on HMBC studies. An olefinic proton at δ 5.09 was placed at C(4') and another proton with a br. s at δ 3.52 was assigned to H–C(2). Three OH groups were recognized in the ¹H-NMR at δ 1.10, 1.90, and 3.80 by addition of D_2O . The strong NOE difference correlation between Me – C(1) and H – C(2) supported the relative cis configuration of the dihydroxy groups at C(1) and C(2) (axial position), which was also evidenced by the Me-C(1) signal at δ (C) 27.7 [12][13]. The NOE difference spectrum also showed correlation between the H-C(2) and $CH_2(2')$, supporting the equatorial position of OH-C(4). Other NOE correlations between Me-C(1') and H_b -C(3) and H_b -C(2') were also found.

Compound **3** was obtained as colorless oil. The molecular formula was deduced to be $C_{24}H_{44}O_4$ by FAB-HR-MS as it showed the $[M + H]^+$ ion at m/z 397.3318. From the spectral studies, the structure of **3** was elucidated as methyl (2*E*)-2-(1-hydroxy-2-oxopropyl)eicos-2-enoate (**3**), which was further substantiated by COSY, NOESY, and HMQC experiments. The zero $[a]_D^{20}$ value of **3** suggested that it was considerably racemized.

The IR spectrum of **3** showed absorption bands due to the presence of OH (3462 cm⁻¹) and C=O (1726 cm⁻¹) groups. The ¹H-NMR spectrum exhibited the signals for an olefinic proton at δ 7.08 (t, J = 8.0), an oxymethine proton at δ 4.90 (br. *s*), an OH group at δ 4.02 (br. *s*) (D₂O exchangeable), a MeO group at δ 3.73

(s), an Ac group at $\delta 2.15$ (s), CH₂ groups at $\delta 2.35$ (q), 1.51 (m), and 1.26 (br. s), and a terminal Me group at $\delta 0.88$ (t, J = 6.8), similar to that of the methanolysis product of isolineranolide E [14]. The geometry of the alkene chain of **3** was determined to be the (*E*) form based on the chemical shifts of H–C(3) (δ 7.08) and H–C(4) (δ 2.35) [14].

The optically active mixture of machicolide A (4; (*E*); 65%) and machicolide B (5; (*Z*); 35%) was obtained as a colorless oil. The molecular formula was deduced to be $C_{24}H_{44}O_4$ from FAB-HR-MS (397.3308, $[M + H]^+$). The UV spectrum exhibited the absorption maxima at 216 nm, and the IR absorptions inferred the presence of an OH group (3420 cm⁻¹) and an α,β -unsaturated γ -lactone (1746 and 1683 cm⁻¹). The data suggested the structure of (3*E*)- and (3*Z*)-4,5-dihydro-4-hydroxy-5-methoxy-5-methyl-3-octadecylidenefuran-2(3*H*)-one for **4** and **5**, respectively.

The ¹H-NMR spectrum of **4** showed signals for an olefinic proton (δ 6.99 (*td*, J = 8.0, 1.6)), an oxymethine proton (δ 4.54 (br. *s*)), a MeO group (δ 3.39 (*s*)), a Me group (δ 1.60 (*s*)) and CH₂ groups (δ 2.38 (*m*); 1.50 (*m*); 1.26 (br. *s*)), and a striking resemblance to those of litseakolide F (**6**) [7]. The side chain at the γ -lactone of **4** was found to be an octadecylidene group from its molecular formula. The ¹H-NMR spectrum of **5** showed high similarity to that of litseakolide G (**7**) except for an octadecylidene group in **5**.

The configuration at C(4) in both compounds was reasonably determined to be (4R) [6][9][15], and the NOESY data supported (5*R*) configuration.

The NOESY of 4/5 showed correlations between the H-C(4) and MeO-C(5) signals, like in the case of 6 and 7, supporting the (5*R*) configuration [7].

Besides **1**–**5**, the known caryophyllene oxide (=4,12,12-trimethyl-9-methylene-5oxatricyclo[8.2.0.0^{4,6}]dodecane), hexacosane, tetracosanoic acid, isomahubanolide-23 (=(3*E*),4*R*)-4,5-dihydro-4-hydroxy-5-methylidene-3-octadecylidenefuran-2(3*H*)-one), and β -bisabolol (=(1*S*)-1-[(1*S*)-1,5-dimethylhex-4-enyl]-4-methylcyclohex-3-en-1-ol) were also isolated from the stem wood of *Machilus zuihoensis*.

The cytotoxicity activity of all isolates were tested *in vitro* against NUGC-3 and HONE-1 cancer cell lines. The eicos-2-enoate **3** showed marginal activity, with ED_{50} values of 6.33 and 6.44 µg ml⁻¹, respectively, as did β -bisabolol with ED_{50} values of 6.68 and 6.73 µg ml⁻¹, respectively.

Experimental Part

General. TLC: silica gel 60 F_{254} precoated plates (*Merck*). Column chromatography (CC): silica gel 60 (*Merck* 70–230 mesh, 230–400 mesh, ASTM). M.p.: Uncorrected. Optical rotation: Jasco DIP-370 polarimeter; in CHCl₃. UV Spectra: Jasco UV-240 spectrophotometer; λ_{max} (log ε) in nm. IR Spectra: Perkin-Elmer 2000 FT-IR spectrophotometer; ν in cm⁻¹, ¹H-, ¹³C- and 2D-NMR: Varian Unity-Plus-400 and Jeol GSX-600 spectrometers; δ in ppm, J in Hz. EI-MS Spectra: VG-Biotech Quatro-5022 spectrometer; m/z (rel. %). FAB-HR-MS: Jeol SX102A mass spectrometer.

Plant Material. The stem wood of *M. zuihoensis* was collected at Mutan, Pingtung County, Taiwan, in January 2000. A voucher specimen (No. Chen 2280) was deposited in the Herbarium of the School of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan, R.O.C.

Extraction and Isolation. Shade-dried and powered plant material (23 kg) was extracted with MeOH. The extract (2 kg) was partitioned into hexane (500 g), AcOEt (87 g), and MeOH-soluble (500 g) parts. The hexane fraction (81 g) was submitted to CC (silica gel, hexane/AcOEt step gradients): *Fractions* 1-7. *Fr.* 1 (AcOEt/hexane 1:4, 5 g) was subjected to CC (silica gel; AcOEt/hexane) to give tetracosanoic acid (5 mg). Repeated

purification of *Fr. 3* (AcOEt/hexane 2:3; 4 g) by CC (silica gel; AcOEt/hexane) gave **1** (15 mg), **2** (10 mg), hexacosane (30 mg), isomahubanolide-23 (100 mg), and β -bisabolol (10 mg). *Fr. 4* (AcOEt/hexane 1:1; 100 mg) was subjected to prep. TLC (AcOEt/CH₂Cl₂ 1:4) to furnish **3** (15 mg) and caryophyllene oxide (20 mg). *Fr. 6* (AcOEt/hexane 4:1; 20 mg) was purified by prep. TLC (Me₂CO/CHCl₃ 1:1): **4/5** (3 mg).

rel-(2R,3aR,6E,6aS)-2-Heptadecyl-3a-methyl-6-octadecylidene-6,6a-dihydrofuro[2,3-d][1,3]dioxol-5(3aH)one (= Machilactone A; **1**). Colorless needles. M.p. 58–60°. $[a]_{20}^{20} = +20.95$ (c = 0.082, CHCl₃). UV (CHCl₃): 243 (4.36). IR (KBr): 2917, 2846, 1763, 1677, 1468, 1389, 1266, 1116, 1057. ¹H-NMR (CDCl₃, 600 MHz): 0.88 (t, J = 7.2, Me(18'), Me(17'')); 1.26 (br. *s*, 29 CH₂); 1.50 (m, CH₂(3')); 1.68 (m, CH₂(1'')); 1.71 (s, Me–C(3a)); 2.40 (m, CH₂(2')); 4.89 (d, J = 1.2, H–C(6a)); 5.01 (t, J = 4.8, H–C(2)); 7.09 (td, J = 7.8, 1.8, H–C(1')). ¹³C-NMR (CDCl₃, 150 MHz): 14.1 (C(18'), C(17'')); 22.7 (Me–C(3a)); 22.4, 23.6, 26.9, 27.2, 29.3, 29.4, 29.5, 29.6, 29.7, 31.9, 32.0 (29 C, CH₂); 28.2 (C(3')); 30.2 (C(2')); 32.7 (C(1'')); 78.4 (C(6a)); 103.9 (C(2)); 109.8 (C(3a)); 126.3 (C(6)); 150.8 (C(1')); 168.1 (C(5)). FAB-MS: 633 (26, [M + H]⁺), 569 (12), 525 (20), 481 (16), 437 (20), 393 (28), 365 (71), 242 (47), 205 (100). FAB-HR-MS: 633.5803 (C₄₁H₇₇O₄⁺; calc. 633.5822).

rel-(*1*R,2S,4R)-*1*-[(*1*R)-*1*,5-Dimethylhex-4-enyl]-1-methylcyclohexane-*1*,2,4-triol (= 3,4-Dihydroxy- β -bisabolol; **2**). Colorless needles. M.p. 138–140°. $[a]_{D}^{20} = -14.9$ (c = 0.112, CHCl₃). UV (CHCl₃): 243 (3.57). IR (KBr): 3322 (OH), 2961, 2925, 2360, 1455, 1375, 1204, 1066, 1029, 914, 850. ¹H-NMR (CDCl₃, 600 MHz): 0.93 (d, J = 6.6, Me–C(1')); 1.06 (m, H_b–C(6)); 1.10 (br. s, OH); 1.33 (s, Me–C(1)); 1.36 (m, H–C(1')); 1.41 (m, H_b–C(3)); 1.43 (m, H_b–C(5)); 1.60 (s, Me(6')); 1.61 (m, H_a–C(6)); 1.68 (s, Me–C(5')); 1.72 (m, H_b–C(2')); 1.86 (m, H_a–C(3)); 1.90 (br. s, OH); 1.91 (m, H_b–C(3')); 1.96 (m, H_a–C(2')); 2.02 (m, H_a–C(5)); 2.10 (m, H_a–C(3')); 3.52 (br. s, H–C(2)); 3.80 (br. s, OH); 5.09 (t, J = 8.2, H–C(4')). ¹³C-NMR (CDCl₃, 150 MHz): 13.5 (Me–C(1')); 17.7 (C(6')); 25.7 (Me–C(5')); 26.5 (C(3')); 27.7 (Me–C(1)); 29.1 (C(5)); 29.8 (C(3)); 30.8 (C(6)); 34.0 (C(2')); 43.6 (C(1')); 71.7 (C(1)); 74.9 (C(2)); 75.8 (C(4)); 124.4 (C(4')); 131.8 (C(5')). FAB-MS: 257 (16, [M + H]⁺), 239 (63, [$M + H - H_2O$]⁺), 221 (61), 203 (50), 69 (100). FAB-HR-MS: 257.2128 (C₁₅H₂₉O₃⁺; calc. 257.2116).

Methyl (2E)-2-(1-hydroxy-2-oxopropyl)eicos-2-enoate (**3**). $[a]_{D}^{20} = 0$ (c = 0.376, CHCl₃). UV (MeOH): 213 (4.13). IR (KBr): 3462 (OH), 2922, 2853, 1726, 1646, 1466, 1357, 1275, 1152, 1071. ¹H-NMR (CDCl₃, 400 MHz): 0.88 (t, J = 6.8, Me(20)); 1.26 (br. s, 14 CH₂); 1.51 (m, CH₂(5)); 2.15 (s, MeCOO); 2.35 (q, J = 7.61, CH₂(4)); 3.73 (s, MeO); 4.02 (br. s, OH–C(1')); 4.90 (br. s, H–C(1')); 7.08 (t, J = 8.0, H–C(3)). ¹³C-NMR (CDCl₃, 100 MHz): 14.0 (C(20)); 27.1 (C(3')); 22.6, 24.7, 29.2, 29.3, 29.4, 29.5, 29.7 (14 C, CH₂); 28.6 (C(5)); 31.9 (C(4)); 51.9 (MeO); 73.3 (C(1')); 129.6 (C(2)); 149.1 (C(3)); 166.5 (C(1)); 206.3 (C(2')). EI-MS: 397 (4, $[M + H]^+$), 365 (2), 353 (21), 321 (14), 293 (10), 284 (5), 275 (3), 241 (3), 115 (38). FAB-HR-MS: 397.3318 (C₂₄H₄₅O₄⁺; calc. 397.3318).

Mixture **4**/5. Colorless oil. $[a]_{D}^{20} = +70.28$ (c = 0.044, CHCl₃). UV (MeOH): 216 sh (4.13). IR (KBr): 3420 (OH), 2921, 2851, 1746, 1683, 1466, 1384, 1283, 1199, 1079, 1021. EI-MS: 397 (42, $[M + H]^+$), 396 (5, M^+), 365 (24), 347 (3), 322 (4), 304 (3), 275 (2), 205 (2), 164 (13), 153 (77), 140 (100). FAB-HR-MS: 397.3308 (C₂₄H₄₅O₄⁺; calc. 397.3319).

(3E,4R,5R)-4,5-Dihydro-4-hydroxy-5-methoxy-5-methyl-3-octadecylidenefuran-2(3H)-one (= Machicolide A;**4**). ¹H-NMR (CDCl₃, 400 MHz): 0.88 (*t*,*J*= 7.0, Me(18')); 1.26 (br.*s*, 14 CH₂); 1.50 (*m*, CH₂(3')); 1.60 (*s*, Me-C(5)); 2.38 (*m*, CH₂(2')); 3.39 (*s*, MeO); 4.54 (br.*s*, H-C(4)); 6.99 (*td*,*J*= 8.0, 1.6, H-C(1')). ¹³C-NMR (CDCl₃, 100 MHz): 14.1 (Me(18')); 16.1 (Me-C(5)); 22.4, 27.2, 28.8, 29.3, 29.4, 29.5, 29.6, 29.8 (14 C, CH₂); 29.2 (C(3')); 31.9 (C(2')); 50.3 (MeO); 72.6 (C(4)); 109.3 (C(5)); 130.0 (C(2)); 148.4 (C(1')); 168.0 (C(2)).

(3Z, 4R, 5R) - 4, 5-Dihydro-4-hydroxy-5-methoxy-5-methyl-3-octadecylidenefuran-2(3H)-one (= Machicolide B; 5). ¹H-NMR (CDCl₃, 400 MHz): 0.88 (t, J = 7.0, Me(18')); 1.26 (br. s, 14 CH₂); 1.51 (m, CH₂(3')); 1.55 (s, Me-C(5)); 2.76 (m, CH₂(2')); 3.40 (s, MeO); 4.40 (br. s, H-C(4)); 6.57 (td, J = 8.0, 1.6, H-C(1')). ¹³C-NMR (CDCl₃, 100 MHz): 14.1 (C(18')); 16.3 (Me-C(5)); 22.7, 26.9, 28.4, 29.4, 29.4, 29.5, 29.6, 29.7 (14 C, CH₂); 29.3 (C(3')); 33.3 (C(2')); 50.5 (MeO); 75.8 (C(4); 108.8 (C(5)); 129.8 (C(3)); 150.3 (C(1')); 167.8 (C(2)).

This work was kindly supported by the National Science Council of the Republic of China (NSC 89-2323-B-037-0033). The authors thank the Division of Biotechnology and Pharmaceutical Research, NHRI, Republic of China for the bioassay studies.

REFERENCES

- [1] X. Fu, T. Sëvenet, F. Remy, M. Pais, A. Hamid, A. Hadi, L. M. Zeng, J. Nat. Prod. 1993, 56, 1153.
- [2] I. L. Tsai, C. F. Hsieh, C. Y. Duh, I. S. Chen, Phytochemistry 1996, 43, 1261.
- [3] I. L. Tsai, C. F. Hsieh, C. Y. Duh, Phytochemistry 1998, 48, 1371.

- [4] I. S. Chen, I. L. Lai-Yaun, C. Y. Duh, I. L. Tsai, Phytochemistry 1998, 49, 745.
- [5] I. L. Tsai, J. H. Chen, C. Y. Duh, I. S. Chen, *Planta Med.* 2000, 66, 403.
- [6] H. C. Kwon, N. I. Baek, S. U. Choi, K. R. Lee, Chem. Pharm. Bull. 2000, 48, 614.
- [7] H. I. Cheng, W. Y. Lin, C. Y. Duh, K. H. Lee, I. L. Tsai, I. S. Chen, J. Nat. Prod. 2001, 64, 1502.
- [8] J. C. Liao, in 'Lauraceae in Flora of Taiwan', 2nd edn., Editorial Committee of the Flora of Taiwan, Taipei, 1996, Vol. II, p. 483.
- [9] M. Tomita, S. T. Lu, P. K. Lan, Yakugaku Zasshi 1965, 85, 588.
- [10] C. L. Lee, Ko Hsueh F'a Chan Yueh K'an 1981, 9, 578.
- [11] G. Ohloff, W. Giersch, R. Naf, F. Delay, Helv. Chim. Acta 1986, 69, 698.
- [12] P. Crews, E. Kho-Wiseman, Tetrahedron Lett. 1978, 28, 2483.
- [13] M. Miyazawa, H. Nankai, H. Kameoka, Phytochemistry 1995, 39, 1077.
- [14] K. Seki, T. Sasaki, S. Wano, K. Haga, R. Kaneko, Phytochemistry 1995, 40, 1175.
- [15] J. C. Martinez, M. Yoshida, O. R. Gottlieb, Phytochemistry 1981, 20, 459.

Received January 3, 2002